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Introduction 

Chemists worldwide encounter new synthetic challenges daily, particularly in contract 

development and manufacturing organizations (CDMOs) where they often lack background 

knowledge about target molecules and previously employed synthetic routes. The demand for 

modified or new routes is also common due to various technical, intellectual property, 

regulatory, and environmental factors. In such cases, experience, deep knowledge, and 

intuition play crucial roles in determining the plausibility of finding new routes or improving 

existing ones. 

Computer-assisted synthesis design (CASD) systems have gained popularity in recent years, 1 

providing support in generating new synthetic ideas. However, their practical synthetic 

feasibility is most often limited, even though advancements in applied machine learning 

techniques have allowed for new perspectives and predictions of possible pathways and 

conditions.2 Tools such as ICSynth,3 ChemPlanner,4 MIT’s ASKCOS,5 AstraZeneca’s 

AIZynthfinder,6 and the IBM7 and ETH Zürich collaboration have emerged, and proved useful, 

offering open-source or subscription-based access. While these tools significantly advance 

reaction prediction, their limitations lie in the size and quality of available data sources. Most 

of these systems tend to prioritize the most obvious disconnections first, among them less 

interesting functional groups interconversion. This does prove though that these systems do 

work and certainly give a fresh perspective on viewing results, but they also don’t pertain high 

value for an expert chemist as of yet. For less experienced chemists, or with some adaption, in 

high-throughput scenarios, these systems already do have interesting impact. 

Considering the content and accuracy limitations of existing CASD systems, their current scope 

is insufficient for process development purposes. Notably, Doyle et al. 8, Johansson et al. 9, and 

others have recently discussed this topic and various approaches.  2,10 It is furthermore 

important to acknowledge that not everyone has access to these systems for various reasons. 

A brand-new Route Design represents a challenge for all synthetic chemists, not to mention, 

the difficulties to convince other chemists to invest in a theoretical synthetic route based solely 
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on knowledge and experience. Here we describe a simple and, easy to calculate descriptors as 

new parameters to support reactions data mining and hence route design. 

Methods and Discussion 

The search for chemical descriptors to help data scientists describing organic reactions with 

numbers is nothing new.11 Many different approaches to solve this problem have been 

considered, where the complexity of the descriptor and additionally their calculations pose a 

hurdle for most of the experimental chemists that are not familiar with computer science and 

advanced software applications. 

A commonly used approach to perform reaction searches is to employ reaction fingerprints 

based on the molecular structures of the involved components. This technique enables the 

comparison of complete reactions based on structure only within the dataset.12 While 

evaluating this approach with different (test) reactions, results based on reaction fingerprints 

in most of our scenarios often did not lead to a satisfactory outcome. This became mainly 

evident by manual inspection, where for example, some expected reactions were not present 

among the results and vice versa, expected "incorrect" examples were part of the suggestions, 

i.e., false positive and false negatives created too much noise for a manual analysis of any 

practical relevance. Equally disappointing was the use of e.g., RDkit descriptors, or even 

Mordred, which had previously proven interesting for (binary labeled) yield prediction.13 This 

is most likely due to some of the shortcomings of theses descriptors where for example 

electronic effects of different functional groups are not (sufficiently) accounted for. 

Additionally, many of the available features, unless hand-picked, are not meaningful for 

reactions, such as molecular weight or logP, to name but a few.  

Another difference in our previous work was using a reaction matrix concept,14 where each 

reaction component was described by a of molecular features defining a unique reaction 

matrix (Figure 2). While it was possible to do aforementioned binary prediction using machine 

learning methods, it was not suitable for comparing or identifying any given reaction versus 

similar ones in the literature. Therefore, we considered a different approach to define 

descriptors that would be more suitable for reaction classifications. In addition, we wanted a 

template free approach and not work with the common reaction mapping and its pros and 

cons.15 
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Figure 2. Reaction matrix concept. 

Such descriptors defining a chemical transformation are based on functional groups, atoms 

and selected structural changes going from reactants to the final product (Transform 

Descriptors, TD).16 These features are carefully selected, a combination of simple out-of-the-

box  2d (RDkit) descriptors, combined with additional hand-picked features (vide infra). As 

shown in Equation 1, a resulting, “transform descriptor” (TD) is then simply calculated by the 

subtracting descriptor values of the product, from the sum of the reactants’ descriptor values. 

 

𝑇𝐷 =  𝐹𝑃 − ∑ 𝐹𝑅𝑛

𝑛

𝑖=1

 

Equation 1. Transform descriptor (TD) calculation based on 

product descriptors (i.e., features) (FP) minus sum of reactant 

descriptors (FR). For simplicity’s sake we mainly use descriptors 

only for the two main components in a reaction, i.e., n = 2.  

 

For data-handling, calculation, and analysis, either Knime and/or Python coding was applied. 

Both offer multiple molecular descriptor modules as required, as well as flexibility in terms of 

speed, etc. Some images shown herein were taken from Knime-based evaluations. 

Any dataset analyzed stem most often from external sources and had to be curated and 

normalized to fit the calculation pipeline. The most common freely accessible one is USPTO 

dataset.17 The dataset curation was done to minimize size as much as possible, keeping all 

relevant information: reaction_(smiles), yield, an internal ID, and, if available also experimental 
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procedure, reagents, catalysts, solvents, citation, other conditions. The transform descriptors 

(TD’s) were then calculated using the following sequence: 

• Structure curation using smiles to Rdkit conversion, salt removal, neutralization. 

• Yield normalization, removing missing and erroneous numbers. 

• Calculation of selected Rdkit based descriptors (e.g., NumRotableBonds, 

NumAmideBonds, NumRings, NumAromaticRings, NumAliphaticRings, 

NumAromaticHeterocycles, NumAliphaticHeterocycles, NumAromaticCarbocycles and 

NumAliphaticCarbocycles) of the entire molecule (other descriptors, such as Indigo as 

desired), together with a fragment-based table (Table 1) to capture functional groups. 

Values are calculated for each component, and as indicated in Equation 1, the sum of 

reactant descriptor values are subtracted from the product values.  

• Elemental analysis (EA), based solely on the string, counting most interesting elements 

(not RDkit based). The resulting EAs are calculated by summing the reactants’ elements 

together (per element) and then subtracting the product EAs from that resulting value. 

 

  



 

Page 5 of 13 
 

Transform Descriptors 

(Reactions Data Mining)  
 

Table 1: Fragment based features and their smarts-representation. 

 

These transform descriptors allowed then for more automated analysis, offering more 

promising ways for better clustering of specific reaction similarities. In a somewhat related 

way, Doyle and colleagues also turned to different ways of featurization since neither 

SMARTS Representation Feature Description 

[#7;R] NInR 

[#8;R] OInR 

[#16;R] SInR 

[#15;R] PInR 

[#6]~[#6] C-C_bonds 

[#6]~[#7] C-N_bonds 
[#6]~[#8] C-O_bonds 

[#6]~[#16] C-S_bonds 

[#6;X4] Csp3 

C#C C#C_bonds 

[#6]~[#14] C-Si_bonds 

[#16!H0] S-H 

[#16;X1][#16;X1] -S-S- 

[#16]=[#8] S=O 

[#16][#7] S-N 

[#17,#35,#53]-[#6]-1=[#7]-[#6,#7]=[#6,#7]-

[#6,#7]=[#6,#7]-1 

Hal-6hetring 

[#17,#35,#53]-[#6]1[#6]-[#6][#6][!#1!#6]1 Hal-5het-ring 
[#6;a]-[#8]S([#6])(=O)=O aromatic OMs or OTf 

[#6;a]Br aromatic bromide 

[#6;a]Cl aromatic chloride 

[#6;a]I aromatic iodide 

[#6X2][S][!#6] -C-S-(noC) 

[#7;H1] -NH- 

[#7X1]=[#6X2] -C=N- 

[#7X1]=[#7X1] -N=N- 

[#8X1][#8X1] -O-O- 

[#8]=[#6X2] -C=O 

[$(*-[NX2-]-[NX2+]#[NX1]),$(*-[NX2]=[NX2+]=[NX1-
])] 

azide group 

[$([#16X3]=[OX1]),$([#16X3+][OX1-])] sulfoxide (general) 

[$([#6]=[N+]=[N-]),$([#6-]-[N+]#[N])] diazo 

[$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8] nitro 

[$([SX4](=[OX1])(=[OX1])([!O])[NX3]),$([SX4+2]([OX1-

])([OX1-])([!O])[NX3])]  

sulfonamide 

[CX1-]#[NX2+] isonitirile 

[CX3H1](=O)[#6] aldehydes 

[CX3]=[OX1] any carbonyl 

[NX1]#[CX2]  nitrile 

[NX3][$(C=C),$(cc)] enamine or aniline nitrogen 
[NX3][CX2]#[NX1] cyanide 

[NX3][NX2]=[*] hydrazone 

[NX3][NX3] hydrazine 

[OX2H][cX3]:[c]  phenol 

[n] Aromatic N 

[o] Aromatic O 

[r5] 5-membered rings 

[s] Aromatic S 

[*;a][#6;A;X3]=[O;X1] aromatic carboxylic acid/ester 
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fingerprints nor Mordred descriptors captured correct/sufficient information for their reaction 

modeling purposes.8 The main difference in our approach, aside from manually selected 

features is that we use the difference of product features versus the sum of reactant features 

to yield what we call transform descriptors (TDs, Equation 1). In contrast, other approaches 

most often, albeit not explicitly, use e.g., one-hot-encoding, averages, or sums of all 

component features, even when used in neural network-based encodings. 

 

 

Figure 1: Overview of a Knime based workflow for calculation of TDs. 

 

To test our hypothesis, a random (small) set of ca 2000 diverse reactions were collected and 

submitted to TD calculation to see their potential in clustering reactions of the same type. Any 

features with only zero values were filtered before clustering. To define the optimal number 

of clusters an optimization process was carried out using the Silhouette coefficient as 
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optimization parameter. k-Means algorithm was used for the clustering process and the 

number of clusters was optimized in this case to 58 clusters (Figure 2). 

Figure 2: Overview of workflow concept 

 

Initial visual analysis of the different clusters gave the impression that the process worked very 

well to collect similar reaction types into the same clusters, especially considering the diversity 

of reaction types in the original data set. Nevertheless, it was decided to verify the outcome 

based on these transform descriptors using reaction fingerprints versus the average Tanimoto 

distance within the different clusters. All of them showed an average Tanimoto distance 

around 0.8, indicating that the transforms descriptors used are a valid set of parameters to 

describe reactions (Table 2).  
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Table 2. Clusters and their average Tanimoto distance within the cluster. Notice that the calculation is done for each reaction pair within the cluster. 
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Overall, this method worked well with the available small dataset in categorizing reactions of 

the same type simply by using easy to calculate descriptors, such as those in Table 2. Of further 

note is that no reaction mapping or labeling of certain atom types of groups of reaction 

components were made. 

Nota bene, the clusters consisted not only of certain, specific name-reactions, but of reactions 

generating the same structural motifs regardless the reaction mechanism, meaning, these 

transform descriptors identify more than one conventional, classical name-reaction. For 

example, the Larock indole synthesis is a specific transformation where a haloaniline reacts 

with an alkyne in the presence of a transition metal such as palladium to generate an indole. 

However, the reality is that there are several reactions that do not follow the same reaction 

mechanism but that generate the same final structure. Transform descriptors consider the 

starting materials and final products and therefore the classification is based on the type of 

structure that is being generated rather than the conventional reaction name. This becomes 

of importance when using an existing database and most likely search conventionally by 

keywords and not obtain all possible hits. 

 

 

Scheme 1. All reactions with shown specific structural features 
would be in the same cluster regardless of their mechanism. 

 

To evaluate this hypothesis of transform descriptor being applied in this manner, a test-

reaction not being present in the original data set, was designed and submitted to TD 

calculation and evaluated based on the clustering outcome. This would proof highly valuable 
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since it would be one step closer to the system “learning new chemistry” (within the confines 

of this limited context).  

As test reaction, a Sonogashira type coupling was chosen, see Scheme 2. 

 

Scheme 2. The designed reaction for the cluster assignment (not present as such in the original data set). 

Transform descriptors and clustering were performed as previous and visual inspection of the 

resulting cluster assignments showed reasonable reaction classification where our designed 

reaction was assigned to only one of the original clusters. With all reactions in the predicted 

cluster being compatible with a Sonogashira-type coupling (Table 3). This demonstrates once 

again the utility of the transform descriptors here discussed.  

 

 

Figure 3: A Knime workflow overview describing for classification of a reaction type. 
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Table 3: Examples in the predicted cluster for the reaction in Scheme 2. Not all reactions in the 
cluster operate under a Sonogashira type mechanism but generate the same type of final structure. 

 

 

By applying transform descriptors in a similar way, we propose it should even be possible to 

predict a set of reaction-conditions for a particularly designed reaction. However, this analysis 

requires much more curation and data preparation for achieving optimal results. As shown by 

other research groups, such data preparation represents a complex process, (discussed 

elsewhere).xviii Equally, a large dataset, such as the (full) USPTO will be used to challenge the 

reaction categorization and disclosed elsewhere. 
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Conclusions 

It has been demonstrated that “easy to calculate” and “easy to understand” descriptors may 

be applicable to described complex reactions, equaling, and even challenging known methods 

based on fingerprints or neuronal network type featurization. In addition, we believe these TDs 

to be conceptually easier to understand by even the average synthetic chemist. This does not 

exclude the necessity to eventually combine some of these methods, but the performance with 

the minimalistic input has already proven useful in practical laboratory settings.xix 

 

no preaching, no teaching, just a 

perspective and an opinion 
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